News

  • 0
  • 0

Why Are People Optimistic About GaN Gallium Nitride Application in 5G

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



GaN is a semiconductor material of third-generation with a large forbidden-band width. It has superior properties compared to first-generation Si, and second-generation GaAs.
GaN devices, due to their high thermal conductivity and large band gaps, can operate at temperatures over 200 degC. This allows them to carry higher energy densities and greater reliability. A larger forbidden band and dielectric break-down electric field can reduce the on resistance of the device. This is good for improving the overall efficiency of the product.

GaN semiconductors can therefore be designed to have a higher bandwidth, higher amplifying gain, higher energy efficiency and smaller size. These characteristics are consistent with "tonality", the standard of the semiconductor industry.


The base station power amplifier also uses GaN. Gallium nitride, gallium arsenide and indium-phosphide are common semiconductor materials used in radio frequency applications.

GaN devices have better frequency characteristics compared to other high-frequency technologies such as indium phosphide and gallium arsenide. GaN devices must have a higher instantaneous bandwith. This can be achieved by using carrier aggregation, preparing higher frequency carriers and using carrier aggregation.

Gallium nitride can achieve higher power density than silicon or any other device. GaN has a higher energy density. GaN's small size is an advantage when it comes to a power level. Smaller devices can reduce device capacitance, which makes the design of systems with higher bandwidth easier. Power Amplifiers (PA) are a critical component of the RF Circuit.


According to current applications, power amplifiers are primarily composed of a Gallium Arsenide Power Amplifier (GaAs PA) and a Complementary Metal Oxide Semiconductor Power Amplifier (CMOS PA). GaAs PA has been the mainstay, but the advent of 5G will make it impossible to maintain high integration with GaAs at such high frequencies.

GaN will be the next hot topic. GaN, as a wide-bandgap semiconductor, can withstand greater operating voltages. This results in higher power density. It also means a higher operating temperature.

Qualcomm President Cristiano Amon said at the Qualcomm 5G/4G Summit that the first 5G smartphones will debut during the first half and end of 2019 (Christmas and New Year). According to reports 5G technology should be up to 100 times more efficient than current 4G networks. This will allow users to reach Gigabits per second and reduce latency.


As well as the increase in the density and number of bases stations, there will be a large increase in RF devices. As a result, the number of RF devices required in the 5G period will increase by dozens or even hundreds of times compared to 3G and the 4G periods. Therefore, cost control and silicon-based GaN have a major cost advantage. It is possible to achieve the best cost-effective advantage with silicon-based GaN.

As we can see by looking at the development of the previous two generations, commercialization is the biggest challenge that any new semiconductor technology faces. GaN, which is also in this stage at the moment, will cost more to civilians because of the increased demand for silicon-based devices, the mass production and process innovations, etc.

( Tech Co., Ltd. ) is an experienced manufacturer of Gallium Nitride with more than 12 year experience in the chemical product development and research. You can contact us to send an inquiry if you want high quality Gallium Nitride.

Inquiry us

High Purity 3D Printing Nickel Alloy IN718 Powder

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

Supply Magnesium Granules Mg Granules 99.95%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

Our Latest Products

High Purity 3D Printing Nickel Alloy IN718 Powder

TRUNNANO is a reliable supplier for high purity 3D Printing Nickel Alloy IN718 Powder.…

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

TRUNNANO is a reliable supplier for high purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%.…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

TRUNNANO is a reliable supplier of Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate.…