Scientific News Boron Nitride Graphene Mixture May Be Suitable For Next-Generation Green Cars

Scientific community has long been fascinated by boron nitride due to its unique properties: sturdy, ultra-thin transparent, insulating and lightweight. The boron is a material that can be used by a wide range of researchers.
According to researchers at Rice University a graphene film separated by boron nanotube columns could be used as a material for storing fuel hydrogen in automobiles.

The Department of Energy is setting the standard in storage materials to make hydrogen fuel a practical option for light vehicles. A new computational study by materials scientist Rouzbeh Sharsavari of Rice Lab has determined that pillared Boron Nitride and Graphene may be suitable candidates.

Shahsavari’s laboratory determined the elastic and columnar graphene structures by computer simulation, and then processed the boron nanotubes to create a mixture that simulated a unique 3-dimensional structure. (A sample boron nanotubes seamlessly bound to graphene is prepared.

As the pillars between the floors of a building provide space for people, so do the pillars within the graphene boron-nitride. The goal is to keep them inside and then exit when needed.

The researchers discovered that the pillared graphene and pillared Boron Nitride graphene have a high surface area (approximately 2,547 sq. m. per square meter) as well as good recyclability in ambient conditions. Their model shows adding lithium or hydrogen to the material improves its ability to combine with hydrogen.

They concentrated their simulations on a four-variant structure: a graphene boronnitride doped with lithium or oxygen.

The best graphene at room temperature was oxygen-doped boron oxide graphene. This graphene weighs 11.6% (by weight) and has a volume of 60 g/L.

The material's hydrogen weight was 14.77% in cold weather at -321 Fahrenheit.

The current US Department of Energy economic storage media goal is to store more hydrogen than 5.5% in weight and 40 grams of hydrogen per liter under moderate conditions. The ultimate target is 7.5% weight and 70 gram per liter.

Shahsavari explained that the hydrogen atoms adsorb on the undoped pillared Boron Nitride Graphene due to a weak van der Waals force. When the material has been doped with oxygen the atoms are strongly bound to the mixture. This produces a surface which is better for hydrogen.

"Because the nature of charge and interaction, adding oxygen to the substratum gives us a strong bond," said he. "Oxygen, and hydrogen have been known to share a strong chemical affinity."

Shahsavari explained that the polarization characteristics of boron Nitride combined with graphene as well as the electron mobility in graphene themselves make the material highly adaptable to applications.

Shahsavari explains that "we are looking for the best point" which describes ideal conditions such as the balance between weight and surface area, operating temperature, and pressure. "This is only possible through computational modeling as we can test a lot of changes very quickly. In just a couple of days, the experimenter is able to finish the work that would normally take months.

He said these structures are strong enough to easily surpass the requirements of Department of Energy. The hydrogen fuel tank, for example, can withstand up to 1,500 charging and discharging cycles.

Tech Co., Ltd., a professional boron manufacturer, has over 12 years' experience in the chemical products research and design. Contact us if you need high quality boron-nitride. Send an inquiry .

Knowing the interesting chemical elements boron B comes from afar

Boron has been a major name in the world of chemistry. There have been two Nobel Prizes in Chemistry for the work done on boron.


There are a few heat-resistant products on the market that have added boric acids to common glass. This means the glass will not expand or contract easily after joining.


Diamond is the hardest substance known to man. However, recent theories suggest wurtzite, an alternate form of boron, may actually be more hard than diamond. But these crystals haven't been synthesized.


Boron compounds have a number of interesting properties. They play a crucial role in polymer crosslinking, which gives plasticine a remarkable ability. It is soft and malleable when held in your hands but becomes hard and elastic if you throw it at a wall.


Boric acid is a compound that contains boron and it's often used as a medicine or to kill insects. Boric Acid can be used in chemistry labs to disinfect eyes.
Tech Co., Ltd. is a professional boron manufacturer with 12 years of experience in chemical product development and research. You can contact us to send a request for high quality boron.

Newly 3000°C Ablative Ceramic Coating Successfully Developed - Multi-boron-containing Single-phase Carbide

Boron carbide, alias black diamond, has a molecular formula of B4C, usually grayish black powder. It is one of the three hardest known materials (the other two are diamond, cubic boron nitride), used in tank armor, body armor and many industrial applications. It has a Mohs hardness of 9.3. The team of the Academician Huang Boyun of the National Laboratory of Powder Metallurgy of Central South University has developed a new type of ceramic coating resistant to 3000 degC ablation and its composite materials through a large number of experiments. This discovery may pave the way for the development of hypersonic vehicles.

Professor Xiong Xiang from the Institute of Powder Metallurgy, Central South University, said that hypersonic flight means that its flight speed is equal to or greater than 5 times the speed of sound, that is, at least 6,120 kilometers per hour. At such a high speed, the flight from Beijing to New York can be completed within 2 hours, provided that the key structural components of the aircraft can withstand severe air friction and hot air impact of up to 2000-3000 deg C without being damaged. . The newly discovered ultra-high temperature ceramic coatings and composite materials from Central South University provide better protection for the above components. It is reported that this is the world's first synthesis of this quaternary boron-containing carbide single-phase ultra-high temperature ceramic material, and made into a coating, perfect "fusion" with carbon-carbon materials. In the current field of new materials, the mainstream is the study of mixed materials in binary compound systems. Therefore, its successful development will greatly promote the application of quaternary system materials in the field of hypersonic.

The novel ceramic coating modified carbon/carbon composite material is composed of quaternary boron-containing single-phase carbide composed of zirconium, titanium, carbon and boron elements, and has a stable carbide crystal structure. It is mainly obtained by introducing a multi-ceramic phase into a porous carbon/carbon composite by an infiltration process. The ultra-high temperature ceramic combines the high temperature adaptability of carbides with the anti-oxidation properties of borides, which makes the coatings and composites exhibit superior ablation resistance and thermal shock resistance. In addition to withstanding the ultra-high temperature test of 3000 degC, the ceramic oxide has a low oxygen diffusion rate, high-temperature self-healing ability, ceramic coating dense and gradient structure, which also makes the ceramic exhibit a lower material than other ceramic systems. Ablation loss rate.

"Because this ultra-high temperature ceramic combines the high temperature adaptability of carbides with the anti-oxidation properties of boride, the above coatings and composites exhibit superior ablation resistance and thermal shock resistance, which is the key to hypersonic vehicles. The promising candidates for the parts," said Xiong Xiang.

The research results of the team research and development were published on June 15th in Nature Communications. The State Key Laboratory of Powder Metallurgy of Central South University is the first completion unit of the thesis. Professor Xiong Xiang is the first correspondent and Zeng Yi. The doctor is the first author. The partner unit, the University of Manchester, UK, characterized and analyzed the material.

Once published, the article has received extensive attention from foreign academic circles and the media. In the first three days after the publication, the download volume exceeded 5,000 times, while the other articles published on the same day were downloaded 300-900 times. The British "Daily Mail", "The Economist", the United States "Yahoo", "Public Machinery", Russia's "Satellite News Agency" and other dozens of mainstream media and authoritative academic institutions in the world have given extensive attention and coverage of this research. . According to the reviewer of Nature Newsletter, "The above research results will ignite the academic enthusiasm and interest in the application of quaternary system materials in the hypersonic field, because this represents a very promising material system."

Since 2002, with the support of the National 863, 973 and the National Natural Science Foundation, under the leadership of Professor Chang Xiang, a scholar from the Yangtze River, the team started with a medium-high temperature (<1600 degC) anti-oxidation coating of carbon/carbon composites. Look for a new ultra-high temperature ceramic coating material with excellent oxidation resistance and ablation resistance. In the course of the research, the material system screened from the initial silicon carbide to the subsequent strontium carbide, titanium carbide, zirconium carbide, zirconium boride, tantalum carbide and other dozens of systems and hundreds of high-temperature materials, almost involved All existing ultra-high temperature ceramics and high temperature composites. Up to now, the breakthrough in the development of new ablation-resistant ceramic coatings at 3000 degC ultra-high temperature environment has been achieved, which lasted for 15 years.

Tech Co., Ltd is a professional Boride Powder manufacturer with over 12 years experience in chemical products research and development. If you are looking for high quality Boride Powder, please feel free to contact us and send an inquiry.


Compound Name TiH2 Powder Titanium Hydride Application For Welding And Catalysts

The titanium hydride used in powder metallurgy and metal-ceramic sealing is also used to provide titanium for the alloy powder.

Titanium Hydride is very fragile and can be used for powdered titanium. The hydride is also used to weld. Thermal decomposition of titanium hydride precipitates new, ecological hydrogen and Titanium metal. This increases the strength and promotes welding.

PNNL's collaborators and PNNL discovered a method to get around this issue six years in advance. They additionally developed a low cost way of supplying material at a commercial scale. Instead of starting with molten Titanium, the team substituted titanium-hydride (TiH2) Powder.

In the last few years, another BE PM-Ti approach has been developed that allows for the production of BE components which are almost poreless at one time. This method uses vacuum sintering titanium hydride (TiH2) instead of Ti-steel powder. TiH2 powders will dehydrogenate during the entire sintering process at mild temperatures, before being sintered under vacuum at high temperature.

Current implant requirements include biocompatibility and bone-like mechanical properties. Porous Titanium can meet these needs if enough porosity is obtained, as well as large pores and interconnections that allow bone to grow. Porous components are created from TiH2 based feedstocks with space holders.

Tech Co., Ltd., a leading manufacturer of titanium hydroide (TiH2), has over 12 year experience in chemical product development and research. You can contact us by sending an inquiry if you are interested in high quality titanium hydroide (TiH2).

What metal can withstand higher temperatures than tungsten

What metal is more resistant to heat than tungsten?

The melting point for tungsten, which is 3,422 degrees (boiling temperature 5,930 degrees), is the highest of all metal elements on the periodic table. No metal element is higher in melting point than the tungsten.


Tungsten is element number 74 in the VIB Group of Period 6. Each atom has the ability to form six metal bond.


There are elements that can be heated higher than tungsten. Solid carbon can reach temperatures as high as 3,627 degrees c. However, carbon does not have a fixed melting temperature (one atmosphere), because it sublimates between 3627 and 4330 degrees c.


Ta4HfC5, a material with a 4215-degree melting point, is currently the heat resistant material that has been manufactured by humans. The alloy is composed of tantalum carbide and hafnium carbide (melting point 4215), which melts at a temperature higher than that of tungsten.


The melting point of a material is dependent on its pressure. When pressure and temperature are higher than critical, however, the material will become superfluid, losing its melting point.
( Tech Co., Ltd. ) is an experienced tantalum-carbide manufacturer with 12 years of experience in research and product development. Contact us to send an inquiry if you are interested in high-quality tantalum carbide.

Nano silver substitution trend is irreversible

Nanowires to replace infrared first
Due to the rapid growth of the display industry, as well the scarcity of indium, and the high processing costs of ITO films, industry leaders have been searching for alternatives, such as nanowires. Silver nanowires, among other alternatives, are the most advantageous due to their technology and maturity. Additionally, they are flexible and can be used to replace other materials that conduct electricity with flexible displays of east winds.

Nanosilver has the most important role in Nanosilver. Nanosilver has the best antibacterial properties.

"With the present process, silver nanowires are first to be used on a large scale as an alternative for infrared touchscreen technology. Du said, ""The substitute is already obvious." "The large-size products made of silver nanowires are gaining customers' recognition.

Infrared is the main touch control technology used in electronic whiteboards. Infrared transmitter tube and receiving tube is arranged on the raised border so that infrared optical networks are formed.


The next major flashpoint will be 2020

The global smartphone market, with its huge population, has begun to slow. However, the small and mid-sized markets, due to their large base of users, are also vital for silver nanowires technology to become mainstream.

"The smartphone industry needs revolutionary innovation, whether it's facial recognition, the full screen or the hot AI feature," du said. Du said, "The smartphone industry requires revolutionary innovation, whether it is facial recognition, a full-screen, or AI.


The last step to breaking through the nanowire

The technology of silver microwires is not widely used. The production, manufacture, storage, and patent of the silver nanowires is considered to be an important factor that limits their development.

It is not possible to replace ITO films with silver nanowires. The future holds the biggest potential for completely new applications.

( Tech Co., Ltd. ) is an experienced silver nanoparticles producer with over 12 year experience in research and product development. Contact us to send an inquiry if you are interested in high quality silver particles.

Molybdenum disulfide nanoelectromechanical system ultra-thin ultra-small ultra-low power consumption

Graphene, a typical material with two dimensions, is widely used and highly sought-after by scientists and the industry. What exactly is a 2-dimensional material? Simple, two-dimensional material is a non-nanoscale (between 1 and 100 nm) material in which electrons are able to move freely in two directions (planar movement). Examples of such materials include: graphene; boron nitride; transition metal compounds (disulfide); Molybdenum; tungsten diulfide, disilicide; black phosphorus.
2D materials can be used in a variety of fields. Taking into account the introductions made by the authors, we can list the following examples: printed electronics, flexible electronic, microelectronics (including memory), processors, hyperlenses and terahertz. , quantum dots, sensors, semiconductor manufacturing, NFC, medical, etc.


Molybdenum diulfide, also known as MoS2, is a typical 2-dimensional material that deserves our attention. Molybdenum diulfide, which is composed of two atoms of molybdenum with one atom of sulfur, has only three atoms of thickness. The graphene thickness is nearly the same as molybdenum, but graphene has no band gap. In this context, the author has previously revealed that the US Department of Energy Berkeley Lab research team accurately measured band gap of semiconductor two-dimensional molybdenum-disulfide material (MoS2). It also revealed powerful The tuning mechanisms and relationship between electronic and optical properties of a 2-dimensional material.


In addition, the molybdenum diulfide has an electron mobility that is 100 cm2 /vs. (ie. 100 electrons per centimeter square per volt), although it's much lower than crystal. The silicon has an electron migration rate of about 1400 cm2/vs. However, it is better than amorphous silica and other ultra thin semiconductors.

Molybdenum diulfide, with its excellent semiconductor properties, small size, ultra thin, and softness, is especially suitable for transistors, flexible electronic, LEDs lasers, solar cells.

( Tech Co., Ltd. ) is an experienced Molybdenum diulfide producer with over 12 year experience in research and product development. You can contact us if you're looking for high-quality Molybdenum diulfide. Send an inquiry.

Tungsten Oxide Insulation Material Can Make The Sun Room Cool in Winter and Cool in Summer

What is tungsten Oxide?Tungsten dioxide has the molecular formula WO3 with a weight of 2318.5.
It is a form of tungsticanhydride. Tungsten dioxide is not produced in industrial production. The tungsten-trioxide salts are classified according to their content in tungsten.
Tungsten Trioxide is a powdery pale yellow triclinic crystal. Once the temperature reaches 740 deg C it changes into an orange tetragonal crystalline. In air, it is stable, with a melting point of 1473 deg C and a boiling point higher than 1750.
Tungsten Trioxide is one of the most stable tungsten oxydes. It is not soluble in water or inorganic acids except hydrofluoric. It is soluble with hot sodium hydroxide solution, ammonia and ammonia in order to form soluble-tungstate. If the temperature is greater than 650 deg C it can reduce by H2, but at 1000-1100 C it can be further reduced by C to get tungsten.

The application of tungsten dioxide transparent insulation material
Smart homes make home life safer, more comfortable and more convenient. The smart home also saves energy and is environmentally friendly. So, it's not surprising to see the smart sunroom. One of these is the so-called "intelligence", which breaks the sun room into two parts: summer, like a fire stove and winter, like a refrigerator. Transparent semiconductor materials like tungsten oxide transparent materials are a good way to make the sunroom cool in the summer and warm in the winter. My opinion is that it's not necessary to install floor heating and air conditioning equipment. The best solution to heat insulation in the sunroom is to start at the roots.

This concept of smart homes has already permeated our minds and is being applied everywhere! Unfortunately, this author hasn't been able live an intelligent lifestyle. This led to the classic home scene: the author would go out and come back halfway. Then, she'd remember something, did I lock my door? Is your air conditioner turned off? You cannot survive the day if you do not go back to confirm. But go back, and you'll be late to work! What about changing to the smart home scenario? ----After you lock the front door, turn the scene to unmanned, shut off the power of the terminal blocks, and check the status from the app at any time. It is easy to use, and it makes people feel more at ease.
The switch to the smart room is a similar experience. Some sunrooms are now using Low-e glasses. Researchers tested the blocking of ultraviolet rays and near-infrared radiation by glass coated with nano-tungsten dioxide coating, Low e glass, glasses with heat-insulating films, hollow tempered and single-sided glass. The glass coated with nano-tungsten dioxide has an infrared blockage rate of 91%. 2. Low-e glass has an infrared blocking percentage of 62.8% and a UV blocking percentage of 56%. 3. The infrared blocking percentage of glass with heat-insulating films is 59%, while the ultraviolet blocking percentage is 99.7%. 4. Hollow tempered glasses have an infrared-blocking rate of 34.2%, and an ultraviolet-blocking rate of 23.5%. 5. The infrared blocking percentage of single-sided glasses is 12.4%, and the ultraviolet blocking is 13.5%.

As can be seen by the data, single-sided tempered glass with nano tungsten oxide coating has the best infrared blocking ability. Single-sided tempered glass with thermal film and nano tungsten oxide have the best ultraviolet blocking ability. Coated single-sided glass. However, industry insiders say that because UV light has a bactericidal effect, and most people need to take pictures of the sun to function properly, it's not good to have high UV blocking. It is well-known that solar radiation supplies energy to all human activities on Earth. The amount of infrared, ultraviolet, and other rays that are present in sunlight is important. In general, the scientifically-recommended permeability rate is around 10%. In terms of health and energy savings, using nano-tungsten oxide-coated insulating glass makes the most sense.

It is clear that tungsten oxide is a transparent insulation material with two issues to solve urgently when building energy-saving windows: Transparency is defined as the ability to transmit light. It also meets lighting requirements. High barrier for the near infrared. This reduces energy consumption by blocking the radiant sun's energy.
The tungsten-oxide transparent heat insulating film is an environmentally friendly, water-based material that can be painted to a thickness as low as a few nanometers. This allows it to have the "warm winter, cool summer" effect without the need for air conditioning. The tungsten oxide transparent heat insulating material is also a great option for insulation. . These materials include tungsten bronze as well as ITO, ATO FTO.
Tungsten-oxide insulation is not an "black technology", it is the result of technological and scientific development. According to the author, in today's advocacy for "energy conservation and emission reduction" as well as "taking a path towards sustainable development", these transparent insulation materials will receive more and greater attention.

Tech Co., Ltd., a professional tungsten-oxide manufacturer, has over 12 years of experience in chemical research and product development. Contact us if you need high-quality tungsten oxide. Send a request .

High Purity 3D Printing Nickel Alloy IN718 Powder

In718 Powder is widely used for industrial and aviation turbo-propellers, petrochemical, nuclear reactors, and laser cladding.Particle Size: 15-45mm; 15-53mm; 53-120mm and 53-150mm

3D Printing Nickel Alloy Inconel 718 Properties:
Nickel Alloy IN718 powder is resistant to heat and corrosion.
This kind of precipitation-hardening nickel-chromium alloy is characterized by having good tensile, fatigue, creep and rupture strength at temperatures up to 700 degC (1290 degF).

Inconel 718 material properties:
Nickel Alloy INCONEL 718, a high-strength nickel-chromium metal that resists corrosion and is suitable for temperatures ranging from -423degF to 1300degF. It is easy to fabricate complex parts from this age-hardenable material. Its welding properties are excellent, particularly its resistance against post-welding cracking. The density of Inconel 718 is 8.71g/cm3 when the temperature is 300K. The melting temperature of In718 is 1430degC.

The Inconel 718 alloy has a nickel base and is ideal for applications which require high strength over a wide temperature range, from cold temperatures to 1400degF. The In718 alloy has excellent impact and tensile strengths. Inconel 718 exhibits good corrosion and oxidation resistance in atmospheres within the useful range of strength for the alloy.

The alloy Inconel 718 is a precipitation-hardening nickel, chromium and iron alloy containing molybdenum. It exhibits high strength and good corrosion resistance at low and high temperatures below 650degC. It can be in a solid solution state or a precipitation hardening condition.

Inconel 718, mechanical properties
The Inconel718 alloy is easy to work with and has excellent properties. Its high tensile and fatigue strengths, creep strength, breaking strength and creep resistance are all at 700.

is a trusted supplier. If you're interested in purchasing 3D Printing Nickel Alloy in718 powder in bulk, please send us an email to receive the most recent inconel price. We also provide inconel-718 plate inconel-718 bar and other shapes.

In718

You can also find us on Twitter @Ni

Nb

Mo

It is a good idea to use a different language.

Al

Curiosity

Fe

50.0-55.0

17.0-21.0

4.75-5.25

2.80-3.30

0.65-1.15

0.20-0.80

<=0.30

This is a good way to get started.

Categories

Alloy grades & Characteristics

Alloy number

IN718 Nickel Alloy Powder

Particle size

15-45mm, 15-53mm, 53-120mm, 53-150mm

Morphology:

Spherical or near spherical

Appearance:

Grey

Package:

Aluminum bag, Vacuum packing

Application:

3D Printing Nickel Alloy powder

Other applications

powder metallurgy(PM), injection molding(MIM), spray painting(SP) etc.



How are 3D-printed Nickel alloy IN718 powder manufactured?
In the mechanical processing field, Inconel718 is a material that can be difficult to work with. It has to be processed in a number of ways.
Warm-up
It is important to clean the workpiece before and during the healing procedure in order to maintain a clean surface. Inconel718 becomes brittle when heated in an environment containing sulfur, phosphorus lead or low melting point metals. Impurities are caused by fuel, lubricating, marking, and chalk paints. Fuels should not have sulfur levels above. For example, impurity levels in liquefied natural gas and liquefied gas should not exceed 0.1 percent, while the sulfur level of city gas must be below 0.25 grams per cubic meter. Petroleum gas sulfur content should also be lower than 0.5%.
The heated electric stove should have an improved temperature control. Its gas should be neutral, or at least weakly alkaline.
Thermal processing
Water quenching, or any other rapid cooling method is suitable for Inconel718. It is important to anneal the material in time after hotworking, for best results. During hot working, the material must be heated above the maximum processing temperature. To ensure plasticity, the temperature at which the material reaches 20% deformation should not fall below 960degC.
Cold Work
After the solution treatment, coldworking should be performed. Because the work-hardening rate of Inconel718 (which is higher than austenitic stainless) requires a different processing method, it's important to adjust the equipment and perform an intermediate annealing during the coldworking process.
Heat treatment
Material properties can be affected by different aging and solution treatments. Long-term aging can improve the mechanical properties of Inconel718 due to its low diffusion rate.
Polished
The oxide that forms near the weld on the Inconel718 is more difficult than the stainless steel. It must be polished with fine sanding cloth. It is necessary to remove the oxide with sandpaper, or use a salt solution before pickingling in a mix of hydrofluoric/nitric acid.
Machining
Inconel718 must be machined only after a solution treatment. Work hardening should also be taken into consideration. Inconel718 has a lower surface cutting speed than austenitic stainless.
Welding
The precipitation-hardening type Inconel718 alloy is very suitable for welding and has no tendency to crack after welding. The main advantages of this material are its weldability, easy processing and high strength.
Inconel718 has been designed for use in arc and plasma welding. Before welding the material, it should be free of any oil, powder or other contaminants.

Applications for 3D Printing Nickel Alloy Powder IN718
Our original nickel alloy for 3D-printing and additive manufacturing, Inconel In718.

In718 has excellent tensile, fatigue and fracture resistance. It can resist creeping at high temperatures of up to 700degC. It is easy-to-weld and has an excellent corrosion resistance. Inconel In718 may also be heat-treated.

Inconel can be used to make a variety applications due to its extensive properties. These include liquid fuel rockets, rings, casings and other formed sheet metal components for aircraft, land-based gas engines, cryogenic tanks, fasteners and instrument parts.

In718 is a high-temperature alloy that has a good heat resistance. This makes it ideally suited for gas turbines, aerospace, and other applications. Other applications include measuring probes and pumps in energy and processing technology.

Storage Conditions of IN718 powder:
IN718's performance and effects of use will be affected if the powder is exposed to dampness. The IN718 must be kept in a dry and cool room and sealed in vacuum packaging. IN718 should also not be exposed to stress.

Shipping & Packing of IN718 powder:
The quantity of powder IN718 will determine the type of packing.
IN718 Powder Packing: Vacuum packaging, 100g/bag, 500g/bag, 1kg/bag and 25kg/barrel.
IN718 Powder Shipping: Can be shipped by air, sea or express as quickly as possible after payment receipt.


Technology Co. Ltd., () is an established global chemical supplier and manufacturer, with over 12 years' experience in supplying super-high-quality chemicals, Nanomaterials including Boride Powder, Nitride Powder, Graphite Powder, Sulfide Pulp, 3D Printing Powder, etc.
Contact us to receive a quote. (brad@ihpa.net)

Nickel Alloy Powder Properties

Alternative Names Inconel-718 powder (IN718)
CAS Number N/A
Compound Formula Ni/Fe/Cr
Molecular Mass N/A
Appearance Gray-black powder
Melting Point 1370-1430 degC
Solubility N/A
Density 8.192 g/cm3
Purity N/A
Particle Size 15-45mm, 15-53mm, 53-120mm, 53-150mm
Bold point N/A
Specific Heating N/A
Thermal Conduction 6.5 W/m*K
Thermal Expander N/A
Young's Module N/A
Exact Count N/A
Monoisotopic Mash N/A

Nickel Alloy Powder IN718 Health & Safety Information

Safety Advisory Danger
Hazard Statements H317-H351-H372
Flashing point N/A
Hazard Codes Xn
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information NONH for All Transport Modes
WGK Germany N/A

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size: 100mesh
Purity: 99.99%

About Germanium Sulfide (GeS2) Powder:
Germanium Sulfide also known as Germanium Sulphide and Germanium Disulfide. GeS2 is the formula of germanium disulfide. It is unstable, easy to sublimate and oxidize, and dissociates in humid air, or an inert atmosphere. Inorganic acids (including strong acid) and water are insoluble.
Germanium disulfide is 2.19g / cm3. Germanium Sulfide is small, white powder that consists mainly of Germanium disulfide(GeS2) particle. Germanium disulfide, like many other metal sulfides that are closely related, is the subject of many researches who are researching its potential for energy storage applications such as solid state batteries.
The germanium diulfide crystal has an orthogonal structure. Each cell contains 24 molecules with the following dimensions: A = 11.66a; B = 22.34A; C = 6.86A. Accuracy 1/2%. The space group (C2V19) is FDD. The double-axis is occupied by eight germanium nuclei; the rest of the atoms are in a general area. These 12 parameters were determined. Each germanium is connected with four sulfur atomic trihedrons at an atomic separation of 2.19A. The angle of the two sulfur atoms is 103 degrees.

If you're interested in purchasing Germanium Sulfide (GeS2) Powder , please send us an inquiry.

High Purity Germanium Sulfide Granule Powder:

White powder. Crystal structure is orthogonal. Density is 2.19 grams per cm3. Melting point 800 . Sublimation or oxidation of high temperature, unstable, occurs in humid air. The molten state has a fresh, brown, transparent body with a 3.01g/cm3 density. It is not soluble in water or inorganic acids, including strong acid, but it is soluble in a hot alkali. By the sulfur vapor and germanium powder from the system. For intermediate germanium products.

germanium sulfide CAS number 12025-34-2
germanium Sulfide Molecular Formula GeS2
germanium sulfide Molar mass 136.77g mol-1
germanium sulfide Appearance White crystals with a translucent appearance
germanium sulfide Density 2.94 g cm-3
germanium sulfide Melting point 840 degC (1,540 degF; 1,110 K)
germanium Sulfide Boiling Point 1,530 degC (2,790 degF; 1,800 K)
Germanium sulfide is soluble in water 0.45 g/100mL
germanium sulfide Solubility soluble in liquid ammonia

What is Germanium Sulfide GeS2 Powder produced?
Germanium disulfide may be produced by converting hydrogen sulfide into tetrachloride using a hydrochloric solution.
Germanium disulfide can be prepared by combining germanium with sulfide or hydrogen-sulfide vapour, and a gas mixture of sulfur.

Applications Germanium Sulfide GeS2 Powder:
Solid-State Batteries: Germanium disulfide, like many compounds closely related, is of particular interest to researchers and manufacturers.
This material can be used to produce cathodes in certain types batteries.
The vulcanized microparticles have great potential to be used as high-performance batteries containing lithium-sulfur.
Electrology: For researchers working on energy storage technology Germanium disulfide is a material that has similar characteristics. It can be used to produce other components and materials in electronic technology.
Catalysts: Germanium disulfide, like many sulfides has the unique ability to produce more complex chemicals for high-tech devices and other chemical reactions.
As with many materials related to nano-level sulfide, it has many unique optical properties. However, these properties are still not well understood.
This makes the research interest in this material involve a wide range of industries and fields, from electron-to-photovoltaic to imaging techniques.

Germanium Sulfide (GeS2) Powder Storage Conditions
Germanium Sulfide GeS2 is affected by damp reunion, which will have an adverse effect on the powder's dispersion and use. Therefore, it should be packed in vacuum and kept in a dry and cool room. GeS2 powder must also not be exposed to stress.

Packing & Shipping Germanium sulfide powder GeS2
The amount of Germanium Sulfide powder GeS2 will determine the type of packaging.
Germanium Sulfide powder packaging: Vacuum packed, 100g to 500g per bag, 1kg to 1kg per barrel, or your choice.
Germanium Sulfide Powder Shipping: Can be shipped via air, sea, or express, as quickly as possible after payment receipt.


Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with more than 12-years of experience. They provide high-quality nanomaterials such as boride powders, graphite or sulfide particles, and other chemicals.
Looking for high quality Germanium disulfide powder Send us a message or feel free contact us. ( brad@ihpa.net )

Germanium Sulfide Properties

Alternative Names germanium(IV) sulfide, germanium disulfide,
germanium disulphide, GeS2 powder
CAS Number 12025-34-2
Compound Formula GeS2
Molecular Mass 136.77
Appearance White Powder
Melting Point 800
Boiling Point 1530
Density 2.94 g/cm3
Solubility In H2O 0.45 g/100mL
Exact Mass 137.86532

Germanium Sulfide Health & Safety Information

Sign Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
Transport Information N/A

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high radiation absorption, and high electrical and thermal conductivity. It is used widely in the aerospace and medical industries.

About Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate:
Powder metallurgy produces compact ingots from high purity tungsten. After powder metallurgy, a series further deformations are made and heat treatments are applied until the final products have been produced.

Properties:
High thermal conductivity and thermal conductivity, low thermal expansion. Perfect performance in environments with high radiation exposure.

Applications:
Often used to produce machining tools such as lathes and dices in the aerospace, medical, and military industries.



We have a wide range of tungsten-alloy plates in different grades and sizes. Contact us for any of your needs.


Payment & Transport:

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate Properties

Alternative Names Tungsten Alloy Plate
CAS Number N/A
Compound Formula N/A
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 18.5g/cm3
Purity 99.95%
Size
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young’s Module N/A
Exact Count N/A
Monoisotopic Mash N/A

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries.

Metal Alloy High Purity Copper Plate, 8.92g/cm3,
Surface:
Brush, mirrors, hairline, mill, oiled, bright, shiny, brightly polished.

Dimension:


Applications:
Interior decoration: ceilings, walls, furniture, cabinets, and elevator decoraction.

Payment & Transport:

Metal alloy 8.92g/cm3 high purity polished copper plate properties

Alternative Names Copper Plate
CAS Number N/A
Compound Formula Curiosity
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 8.92g/cm3
Purity 99.95%, 99.99%, 99.995%
Size This is a great way to customize the look of your website.
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact Mass N/A
Monoisotopic Mash N/A

Health & Safety Information for Metal Alloy 8.92g/cm3 High Purity Polised Copper Plate

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

High Purity 3D Printing Nickel Alloy IN718 Powder

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

Supply Magnesium Granules Mg Granules 99.95%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

Newsrobocup2009.org is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsrobocup2009.org.